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CHART FOR CORITICAL COMPRESSIVE STRESS OF
FPLAT RECTANGULAR PLATES

By H. ¥, Hill
SUMMARY

A chart is presented for the coefficient X in the
formula for the critical compressive stress for flat rec—
tangular plates uniformly compressed in one direction.

The chart applies to various combinations of fixed, simply
supported, and free edges.

Chart for X 1n Formula for Critical Stress

The theoretical stress at which a rectangular flat
plate will buckle elastically, when uniformly compressed
in one direction, can be expresscd (see reference 1, p.
331) T

_ E £y 2
Por = % (1-p%) <:‘;>

where Gpp critical stress (at which buckling occurs),
pounds per square inch

b

modulus of elasticity of the material of the
plate, pounds per square inch .

V) Poisson's ratio of the material of the plate
t thickness of fhe-plate, inch

b width of the plate (normal to the direction
of compression), inch

K & coefficient depending on the ratio of leangth
to width of the plate (L/b), the conditions
of restralint at the edges of the plate, and
in some cases on the Poisson's ratio of the,
material of the plate
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In designing structures involving flat plates, a
chart from which X values for the above ecquation could
be obtained, for various conditions of edge restraint,
should prove & convenlence. ' It would be impossible %o
include all the possible variations or combinatioans of
edge condltions, but by defining three definite edge con-
ditions, and considering ths various combianations of these
conditions that might occur, certain limiting cases are
obtained. Other cases involving intermediate conditions
of edge restraint will be bounded by several of these lim-~
iting cases. The definite edge conditions considored arec:

1. Frece ecdge - an cdge adbout which the plate is free
to rotate and at which the plate 1s free to de-
flect.

2. Supported edge =~ an aedge about which the plate )
free to rotate but at which therc can be no de-
flection. :

3., Fixed edge = an’ edge et which therc can 'be no de-
flection and about which therec can be no rota-
tion of the plate. -

The buckling stress for a rectangular flat plate sub-
Jected to uniform compression in one direction, with the
unloaded edges free, can be_determined from the column
formulas. For plates, "E" in the column formulas should bde
replaced by the "plate modulus" [E/(1-p®)] (reference o,p.475).

For plates with other edge conditlons K values to be
used in the squation for critical strese can be obitainod
from the curves plotted in figure 1, Curves arc given for
five combinations of conditions of restraint at the unloaded
cdgos. For each of these combinations two conditions of
the loaded cdges have been consldored, Theoretically,
curves for all casos but cases 1 and la should be composcd
of a serles of scallops, each scallop represcating buckling
into a certain number cf half waves., For practical reasons,
however, these scallops have becn sliminated. The curves .
shown in figure 1 arc the envelope curves drawa tangent to
the scallopse.

The curves of figure 1 represent various dogrees of
approzimation to the theoretically correct valucs, although
in every case the curves .are sufficiently accurate for de~_.
slgn purposes. The sources from mhich K values for the
different cases werc obtained are given in table I, togothor

vs
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wlith pertinent remarks concerning the plotting of the

curves. For those cases for which K <values were obtained
directly by the writer, the major elements of the method

of solution employed are given in table I and the solutlons

are included in an appendix to this report. . R

For thc cases in which one unloeded edge of the plate
is free (1, la, 2, and 2a), the X values are based on a
Poissonl's ratio value of 1/3, which is the accepted value
for aluminum alloys. In some instances, a difference be=
tween Poisson's ratio valuecs of 1/4 and 1/3 is respoansidle
for a difference of ag much as 15 percent in the K value.
For casecs other than those¢ lnvolving one freec edge, the
curves of figure 1 are applicable to anyelastic material,

the X values being independent of Poisson's ratio.

The curves of figure 1 demonsitrate the importance of
the condition of restraint of the loaded cdgoss in determin-
ing uhe buckling stress of rectangular flat plates h&ving
L/b ratios less thaa 3. T e—

Aluminum Company of America,
Aluminum Research Laboratorles, .
Hew Kensington, Pa., April.ls, 1940,
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TABLEW;ﬁ

SOURCE OF X VALUES PLOTTZBED I¥ FIGURE 1

Case

Sourco and Remarks

la

2a

384

4a

5a

Solution from Timoshenko's "Theory of Elastic
Stability," pp. 339-340, and the values calculated
by the writer for & Polsson s ratlo value of 1/3.

Approximate solution by the writer; using the energy
method and the deflection function . o
w = A(l-cos 2ux/L)(y + By?), in which B = £{b,u)
is determined from boundary.conditicas.

Solution from TYimoshenko's "Theory of Elastic
Stability," p. 341, and values calculated Dby the
writer for a Poisson's ratio value of 1/3.

Approximate solution by the writer, using the onsrgy
method and deflcction functions
w = A(l=cos 2mx/L)(l~cos ny/b) for buckling in onc
half wave, and w = A(sin 2Jx/L + Bx®/L3)(l-cos ny/B)
for buckling in any even number of half waves. Coof-
cients =n, B, and J are determinecd from boundary
conditions. ’

Solution from Timoshenkols "Theory of Zlastic
Stability," pp. 329~332. . '

Solution from Timoshenko's "Theory of Blastic
Stability," pp. 363-364,

Solutlion by the writer following the method cmployed
by Timoshenko in "Theory of Elastic Stability,!
PE. 337-342.

The relation 6f this curvs to that for case 4 is esti-
mated from the relatione between the curves for
cascs 3 and 3a and coses 5 and 5a.

Solution from Timoshenko'!s "Theory of Elastic
Stability," pp, 344-345,

Solution from "Buckling of Compresscd Rectangular
Platos with Built—in Edges,!" by J. L, Maulbetsch,
Journal of Applied Mechenics, June 1937,

-—

T

H

Vo
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APPENDIX

Consider a flat platc of length L =and width b,
subjected to o uniform end compression (in the L  dIrecc-
tion) of ¥, per unit width. Consider the axes disposod
as indicated in figure 2. If the deflection of the plate
out of its original plane is denoted by w, +the differen-
tial equation for the buckled plate may be expressed (ref-
erence 1, P. 337)

~ 4 4 % N a
o w 3w S w X O w
-z + 2 + = - = 1
ox dxZay?® dy* D ox (1)
E2 . .
where D = —————— rigidity of the plate per unit width
12(1-p")

The various boundary conditions for the edges of the
platec parallel to the x axis may be exprassed as follows
(reforence 1, pp. 298-300):

For "ixed" edgos,

- ow _
‘ w =0 and 55 = 0 L
For "supported!" ecdges,
32w 32w

w = 0 and

For “free" edges,

32w Ry
— D + 2— =O
3y 2 B 32 0 and oy 3 (2-u) By ax® _

In cascs in which load is applied to '"supported" edges,
the problem of the buckling of a flat plate under edge com~
equation, obtaining the constants of integration from the
boundary conditions. Such a method has been employed by
Timoshenko for obtaining the solution for cases 1, 2, and
5, as well as for certain cases involving intermediaste con-
ditions of edge restraint (reference 1, pp. 337-350). 1In
obtaining a solution for case 4, the writer has followed
the integration method of Timoshenko, determining integra-
tion constants consistent with the bounda?y conditions for
this case, ' '
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For cascs in which the loaded cdges are "ixed," the
above~mentionoed method of integrating the differential
cquation cannot be used, and it 1s convenlent to resort
to one of the approximate methods for obtaining a solutilon,
The writer has obtained approximatc solutlons for casos
la and 2o by application of the "energy" method, This
method also has beon uscd extensively by Timoshenko (ref-
erence 1, p. 81)., The "encrgy equation," obtained by
equating expressions for the work of external forces and
the encrgy of bending may bdbe writton:!

L2\ % 32w v _ 82w
/ {(& aye> 20 ‘_")[axz 377 axay>]} x &y
L

b -
[ e

The critical value for Nx' i1s obtained by solving this
equation, using an expression for the doflection w, which
is some function of x and y and satisfles the boundary
conditions of the casge being considerod.  Except in the very
improbable instance when the assumed expression for the de-
floctlon exactly defines the configuration of the buckled
rlate, the critical load values obtained by the energy meth-
od ars always higher than the true valucs (roferencoe 1, p.
8l)e. The degree of approximation of the encrgy method can
sometimes bo improved by including a parameter ian the ox-
pression for the deflected surfaco, and evaluating this pa-
renoter so as to minimize the value determined for the
eritical load.

Case la
Loaded edges (x = 0 and % = L) fixed; one unloaded
edge (y = 0) supported and the other unloaded edge (y = b)
free.

The houndary conditions for this case are:

[1] w=0 when x = O and when x = L
(2] %% = 0 when x = O and when x = L
(3] w=0 when ¥y =.0
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R 3%
[4] 5;% + B Bx: =0 when y = 0
2 2
(5] %§% + B gy: = 0 when ¥y =1
el 93% + (2=-p) v when ¥y = b
ay W ayaxa

To solve this problem by the energy method, assume
an expression for the buckled surface of the form,

w = £(x) F(y)

From boundary coundition [5]
F(x) F" (b) = = pfi(x) F(D)

(The primes indicate the order of tho partial derivatives.)
This relation may bs written

£(lx) o E)

£1(x) T (D)
Similarly, from boundary condition 6

£(x) Fr1(p) = -(2=p) £"(x) F'(b)

or
£Cx)  _ _(o_uyF (D)
YTy | (2 “)ETTTET__
Combining thsse two equations
pF(B) Fr1(n) = (2-u) FI(D) P"(v) (3)

Boundary conditions 3 and 4 are satisfied by an exprese
slon of the form

w = £(x) (y+By™)

i.g. P(y) = (y+By2?) (4)

wherse n # 1
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Substituting equation (4) and its derivatives into equation
(3) and solving for B

H

B = g1 (8)

where = _Bmunty (6)
2(pun-p=-n)

The boundary conditions [1] and [2], defining the conditions
at the loaded edges, are satisfied by

f(x) = A(?-cos 2£x>

The exprcssion for the shape of the buckled plate is then

W o= A(l—cos 2;}:> (y+By?) (7)

Substituting equation (7) and its partial derivatives into
the cenergy equation (2) and reducing, ylelds for the critie
cal value of Ny

2
Nger = C T ;aD (8)
b
whero C
/ 2(p-1)2
\_L_>2 1 [3 n®(n~-1)° g2 :i
c o 4 L \NB/ mP _(2n-3) _
S 75 SR L 1 g2
’3 n+ 2n+1

, 2 {(l-u)+[(l-r-u)(n+l)—(n-1)JH+ [(l—u)n~ %“;‘Eﬁ%] 5 } (5)

na[.l_+ 2 g4 _L_ge
3 n+2 2n+l

Substituting for . u in equations (6) and (9), the
accepted value for aluminum alloys u = 1/3

-
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4 3 2
5 5 [n-2n+n :}Hz

o = 4 L . 2n -3
T (L/v)? \3 4 s 1 2 1 g2
— - H
[; + n+2 H+ 2n+1 ]
n+tn .2
2 + (5-n) H+ 22—/ E
2 n-1
+ i 2 1 - (9a)
LS + n+2 H 2n+l
7-n
d H= - 6
an 2+4n (6a)

The expression chosen for the shape of the buckled
plate (equation (7)) is based on the assumption that the
plate will Dbuckle into one half wave regardless of the
L/b ratio. It has been demonstrated that plates loaded
through supported edges, and with one unlocaded odge sup~-
ported and the other free (case 1), will bucklec in this
manner (roference 1, p. 339). There is no reason to be-
liove that fixing the loaded sdges would change this char-
acteristic of the buckling of such a plate. That buckling
will always occur in the form of one half wave means that
the minimum value of € will occur at an infinite value
of L/b. Referring to esquation (9a), it can be seen that
a minimpum value for € will occur at adid finite value of
L/b unless the coefficient of the second fterm is zero,.
The only significant value of the parameter n which will
reduce this coefficient to zero is n = 7. Zguation (8a)
then rcduces to

c = —2% 4 0.408 (10)
(L/v)*

Timoshenko gives an approximate expression for C for case
1 (reference 1, P. 340), which involves %wo terms, corre—

sponding to those in equation (1). While this approximate

exprecssion is advocated for long plates, it also glves wvalw-
ues of sufficlent accuracy for short plates. The only sig-
nificant difference between squation (10) and the corre=-
sponding equation for case 1 lies in the term involving
(L/b)2. Por case la this term is four timos as large as
for case 1. . BRI
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Iquation (8) expressééhin.terms of critical stress
becomos
. ' 2
- 2
<012 1-p b

Therefore, the coefficient 'K,' for which valucs aroc plot-—
ted in figure 1, may be exprossed

_m®
K=3350
Case 2a
Loaded odges (x = 0 and x = L) fixed; one unloaded

edge (y = 0) fixcd and the other unloaded edge (y = b)
frec, '

The boundary conditions for this case are:

[1] w=0 when - x = 0 and when x =

[2] %ﬂl= 0 ‘ . when x = 0 and when x =
X

[3] w =20  when y =0

(4] %ﬂ,= 0 : ' when y = 0
32w DRw _ -

[5] EE + “axe = 0 when ¥y = b

- 3
3° 3

(6] §§¥-+ (2-u) 5}5&3 = 0 when y = b

Assume an expression for the buckled surface of the
form ' '

w = f(x) F(y)
Since boundary conditions L[5] and [63 are the same a8 for
case la (a free cdge), equation (3) is also mpplicable to
this case. Boundary conditions. [3] and [4] are satisfled
by an exprossiOn of the form ° i

w = £(x) <l~cos iy

i.ce, F(y) = (l cos-£Z> (11)

"
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O
A A o - -

Substituting equation (11) and its derivatives into equa-
tion (3) and solving for n

Cos n = e —F (12)
2(1-p) -

for w = 1/3 (for aluninum alloys)
n = 1,8343 ' e pu—

While in cases 1 and la the plate can buckle into
only one half wave, in cases' 8 and Z2a the buckled config-
uration may contain one or more half waves, depending on
the proportions of the plate. In solving this prodblen,
two general forms of configuration have been considerecd.
First, it was assumed that the.plate buckled lnto one
half wave. Then a solution wes obtalined which covers buck-
ling into any even number of half waves, the solution bde-
ing carried out specifically for itwo half waves. Buckling
into a number of half waves greatser than 2 was not con- )
sidered, since in such cases the effect of the condltion
of restraint at the loaded edges is negligible. -

Loasidering the plate to buckle into one half wave,
the boundary conditions [1] and [2], defining the condi-

tions at the loaded edges, will be satisfied by the sgua-
tion .

f(x) = A (l-cos ZEX

and the expression for the dbuckled surface will bhe

w = A (l-cos 2= ><l-cos -—) - (13)

Substituting equation (13) and its partial derivatives in-
to the energy egquatioan (2), and solving for the critical
value for Ny gives (for aluminum alloys)

Nyer = C beaD s
where
2
C = —2 & 0.0993(%’-> + 0.624 (14)
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Ag in caseo 1la

¥ = T2
Por the type of buckling involving an ceven nunber of
half wavesy the configuration may be approximated by the
egquation )

3 N
= A < ip 29x 4 3% ><1- os 2L 15
W sin o i cos = j (15)

where J and B . are coefficlents to be evaluated from
the boundary conditions. In this 1nstancc the axes are
taken a8 shown in figure &, and the intcgrals with re-
spect to dx in the energy cequation (2) are taken betwocn
the limits O and L/2. Boundary conditions [1] and [2]
becone

(1) w = 0 when x = £L/2
dw
(2) 5% = 0 when x = £L/2

Fron boundary condition 1
B = ~8B gin J

Evaluating J fron boundary condition [2], yields the
transcendental oquation - SR

J = 3 tan J (16)

The various roots of this oquation give values correspond-
ing to various even numbers of half waves of the buckled
configuration. The lowest root corresponds to a buckled
form of two half waves. This root 1is

J = 4,0782

The critical value for N, can be found as before,
by substituting equation (15) and its partial derivatives
into the energy equation. Such a substitution, in which
the coefficient J has been replaced by its lowest root,
gives for the critical load for aluminum alloys (m = 1/5).

where

by
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2
¢ = 2:626 , o.01vs (-Ii> + 0.638 (17)
: C LN\R b
L k’E’)
Ags before, the X <valucs shown in the curves are
related to the € wvalues as ] o
2

= dI_
X = ) C

Case 4
Loaded edges (x =0 and =x = L) supported; one
unloaded edge (y = 0) fized and the other unloaded edge
(y = b) supported. ’

The boundary conditions for this case are:

(1] w=20 when x = O and when x = L
- [23 é—%-+ n éi% =0 when x =0 and when x = L
5} oy T L
. [3] w=20 when y = 0 :
W _ _
[4] 7 0 when ¥y = 0
(6] w=o0 when y = b '
= 32w -

[61] 3 rREE=0 when ¥y = b . ) .

Pollowing the method of solution of the differential
equation (1) described by Timoshenko (refercnce 1, p. 337)
in which the solution is taken in the form

w = f(y) sin BOE
the genoral expression for £(y). can be written

£(y) = Gy e™% + ¢z ot 4 Gy cos By + 04 sin By
in which

) Nz meqz 4 ux men?
La T2 Lz L2

and G,, C,, G5, Gy are coefficients to be evaluated
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from the boundary'conditions. From boundary conditions
[3] and [4] 1t follows that

\

Cy=B0, 0y +80
Cy = = ""'—5-"—‘:' and Ca = - -—-—5-2*—&—1 _
04 o9

and f(y) can be written

£f(y) = A(cosfy = coshay) + B (sinfy - gainhmy)

From boundary conditions [5] and [6] +two simultaneous
equations are obtained. The critical stress can then be
obtained by equating to zero the determinant of these sogua=
tions in A and B. This manipulation results in the

transcendental equatlon

(«® + 87) sinfb coshadb = <a£ + %;) cogfb sinhab

For given values of L/b, this equation can be solved )
for WN,..» using for the number of half waves (m) thc in- -

tegor which results in minimum values. The critical strcss
can be expressed in the form

Gor = £ —— () ?

and t?o coefficiont X +thus evaluatod for differont ratios
of L/b.,
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